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Some  r e m a r k s  on the O t t ' s  in te rva l  sequence in S iC  polytypes .*  By R. SR[N[VASAN, Centre of Advanced Study in 
Physics, University of Madras, Madras-25, India 

(Received 10 November 1969) 

The restriction of Ott's interval sequence in the polytypes of SiC to the numbers 2, 3 and 4 is related to the 
fact that 1 does not normally occur in the Zhdanov symbol. 

There seems to be no explanation available in the literature 
of the fact that Ott's interval sequence (Ott, 1925) in the 
polytypes of SiC is restricted to the numbers 2,3, and 4 
only. (See Verma & Krishna, 1966.) The purpose of this 
note is to point out that this observation finds a ready 
explanation if taken in conjunction with the other observed 

* Contribution No. 296 from the Centre of Advanced 
Study in Physics, University of Madras, Madras-25, India. 
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Fig. 1. A hypothetical polytype 21Hwith Zhdanov symbol 4345. 
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Fig. 2, Polytype 6H~ with Zhd~nov symbol 33, 

feature of SiC polytypes, namely, that the number 1 does 
not normally occur in the Zhdanov symbol. [The polytype 
2H with symbol 11 is an exception. For a recent review see 
Shaffer (1969).] Since the interval sequence pertains to 
the three symmetry axes A,B, C (Fig. 1) of the hexagonal 
lattice, discussion becomes simplest if we consider the 
(11~0) plane depicting Ramsdell's zigzag sequence (Rams- 
dell, 1947). Consider first a polytype based on a hexagonal 
lattice. Any sequence of numbers such as nl, n2, n3 . . .  in 
the Zhdanov notation is equivalent to making successively 
nl steps to the right (say), then n2 to the left and n3 to the 
right and so on, these steps being always along the diagonal 
as indicated in Fig. 1. 

(I) Consider first the case when nl, n2, n3 . . .  are all 
greater than or equal to 3. In this case it is obvious, because 
of the fact that any three consecutive steps in the same 
direction take one to a point equivalent by translational 
symmetry, that the problem is reduced to one of con- 
sidering n~ modulo 3. Thus it reduces to considering se- 
quences where the nj involve 3, 2 or 1. 
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Fig. 3. Polytype 4H, with Zhdanov symbol 22. 
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Fig.4. Polytype 10H~ with Zhdanov symbol 2332, 
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(II) Consider the case when all nj are equal to 3. It  is 
readily seen from Fig. 2 that the interval becomes 3 for 
axis A, and 2 and 4 for axes B and C. 

(iII) If  we take the case when all are equal to 2 and 
starting from A (say), it is seen that the interval becomes 4 
for axes A and C while it is 2 for axis B. (Fig. 3). 

(IV) If  in the sequence nl, n2, n3 . . .  2's are sandwiched 
between 3's, then again the results of cases (II) and (III) 
become operative and thus any combination of 3's and 2's 
produces only intervals of 2, 3 and 4 and none greater 
than 4 (Fig. 4). 

The case in which the interval can be greater than 4 can 
be realized only if l 's  are involved in the Zhdanov symbol. 
Thus a sequence of complete l 's  (polytype 2H) produces 
intervals of 2 in two of the axes while the third axis is 
completely unoccupied (it may be considered to be of 
infinite interval). This infinite interval can be brought down 
to a finite one of any desired value if an appropriate 
sequence of l 's  is sandwiched by nl and n2, with both nl 
and n2 > 2. (Fig. 5). Thus, the interval sequence need 
not be restricted to 2, 3 and 4 provided l 's  occur in the 
Zhdanov symbol. This is not  the case in SiC polytypes, and 
the observed intervals of 2, 3 and 4 can thus be attributed 
to the absence of l 's  in the Zhdanov symbol. These remarks 
can be readily extended to the rhombohedral  lattice where 
the axes A, B and C become equivalent. 

The non-occurrence of l 's in the Zhdanov symbol might 
itself find an explanation from a physical mechanism, such 
as for instance Mitchell's (1957) treatment based on screw 
dislocations, and the generation of certain family series 
of polytypes or from Schneer's (1955) treatment. These, 
however, need not  concern us here. 

I should like to thank Dr A. R. Verma for helpful com- 
ments. 

References 

MITCHELL, R. S. (1957). Z. Kristallogr. 109, 1. 
OTr, H. (1925). Z. Kristallogr. 61, 515. 
RAMSDELL, L. S. (1947). Amer. Min. 32, 64. 

A B C A B C A B C A  

Fig.5. Hypothetical polytype 16H with Zhdanov symbol 
3(11)3223. Note an interval of 10 occurring along B. 

SCHNEER, C. J. (1955). Acta Cryst. 7, 300. 
SHAFFER, P. T. B. (1969). Acta Cryst. B25, 477. 
VERMA, A. R. & KRISHNA, P. (1966). Polytypism and Poly- 

morphism in Crystals. p. 109. New York:  John Wiley. 

Acta Cryst. (1971). A27, 76 

A clarification of differences in site orientation in crystals. By L. L. BOYLE, University Chemical Laboratory, Can- 
terbury, Kent, England 

(Received 26 March 1970) 

Tables are presented whereby physically relevant differences in the relationship of the elements of symmetry 
of a Wyckoff site to those of the crystal class can be distinguished. 

In International Tables for X-ray Crystallography, (1969) 
the various sets of equivalent points (Wyckoff sites) are 
described by the point group of the elements of symmetry 
passing through a typical point (i.e. the site group), the 
number of points in the set, their coordinates, the Wyckoff 
label and some information of relevance to X-ray crystal- 
lographers. For those interested in spectroscopic and other 
tensorial properties of crystals, however, this is often in- 
sufficient and a detailed examination of the coordinates 
has hitherto been necessary in some cases where differ- 
ences in site orientation within the unit cell can lead to 
different correlations of the representations of the crystal 
da~s and those of the site group, 

The problem can be illustrated simply by means of the 
crystal class DE = 222. A site of symmetry CE = 2 can lie on 
the crystallographic x, y or z axes of the unit cell and 
accordingly the correlation between the representations of 
D2 and C2 is given on descent in symmetry by the subgroup 
table 

D2 

A 
B1 
B2 
B3 

c~ c~ c~ 
A A A 
B B A 
B A B 
A B B 

and on ascent in symmetry by the supergroup tables 


